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Entropies of Static Dilaton Black Holes
From the Cardy Formula
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A standard Virasoro subalgebra for a static dilaton black hole obtained in the low-energy
effective field theory describing heterotic string is constructed at a Killing horizon. The
statistical entropies of the Garfinkle—Horowitz—Strominger dilaton black hole and the
Gibbons—Maeda dilaton black hole obtained by standard Cardy formula agree with their
Bekenstein—Hawking entropies only if we take periodf functionv as the periodicity

of the Euclidean black hole. We also consider first-order quantum correction to the
entropy and find that the correction is described by a logarithmic term with a factor of
—1, which is different from Kaul and Majumdar’s factor ef3.

1. INTRODUCTION

The statistical mechanical description of the Bekenstein—Hawking black hole
entropy (Bekenstein, 1972,1973, 1974; Hawking, 1974, 1975; Kaditel) 1993)
both in string theory (Youm, 1999) and in “quantum geometry” (Ashteltal.,
1998) has attracted much attention recently. Carlip (1999a,b) derived the central
extension of the constraint algebra of general relativity by Brown—Henneaux’s
approach and manifested covariant phase space methods (lyer and Wald, 1994,
1995; Lee and Wald, 1990; Wald, 1993), and found that a natural set of bound-
ary conditions on the (local) Killing horizon leads to a Virasoro subalgebra
with a calculable central charge and the standard Cardy formula gives the
Bekenstein—Hawking entropies. Those works suggested that the asymptotic
behavior of the density of states may be determined by the algebra of diffeo-
morphism at horizon. Recently, we (Jing and Yan, in press) extended Carlip’'s
investigation (Carlip, 1999b) for vacuum case to a case including a cosmological
term and electromagnetic fields and calculated the statistical entropies of Kerr—
Newman black hole and Kerr—-Newman—AdS black hole using standard Cardy
formula.
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Kaul and Majumdar (2000) found that the lowest order corrections to the
Bekenstein—Hawking entropy is shown by a logarithmic term
An 3, Ay
S~ — ——=In— 4 const+ - - -, 1.1
4 2"y ToonsH ¢
where Ay is the area of the black hole. Carlip (2000) also studied the quantum
corrections to the Cardy formula and found that the entropy is given by

3
S~ S~ SIS +Inc+constt-- -, (1.2)

whereS, is standard Bekenstein—Hawking entropy arid a central charge of a
Virasoro subalgebra. Carlip suggested that if the central charge is used in the sense
of being independent of the horizon area (Carlip thinks that this can be done by
adjusting the periodicity (Carlip, 2000)), then the factor 0#% in logarithmic

term would be universal.

In this paper we will investigate whether or not the Carlip’s conclusion (the
asymptotic behavior of the density of states may be determined by the algebra of
diffeomorphism at horizon) and Kaul and Majumdar’s result (the leading correc-
tions to the entropy is a logarithm of the horizon area with a facter%)fare valid
for the static dilation black holes. In Section 2, using the covariant phase techniques
a constraint algebra is constructed for the gravity coupled to a Maxwell field and
a dilaton. In Section 3, standard Virasoro subalgebras are obtained for Garfinkle—
Horowitz—Strominger dilaton black hole and Gibbons—Maeda dilaton black hole
and then statistical entropies are calculated using the standard Cardy formula and
the quantum corrections to the entropy by the Cardy formula, respectively. The
last section devotes to summary.

2. CONSTRAINT ALGEBRA ON THE KILLING HORIZON

Leeet al. (lyer and Wald, 1994, 1995; Lee and Wald, 1990; Wald, 1993)
showed that for an infinitesimal generat@rof a diffeomorphism the Lagrangian
L, equation of motiom-form E, symplectic potentialn(— 1)-form ®, Noether
current 6 — 1)-form J, and Noether charge ( 2)-form Q satisfy

5L = Es¢ + dO, (2.1)
J§] = O[p, Lep] —& - L, (2.2)
J=dQ. (2.3)

Hamilton’s equation of motion is given by

SHIE] = /C ol$, 56, Le¢] = /C (5[] — d(e - ©[p, 56])].  (2.9)



Entropies of Static Dilaton Black Holes From the Cardy Formula 161

Using Eq. (2.3) and defininga - 1)-formB ass [, & - B[¢] = [, & - O[¢ - 8],
the Hamiltonian can then be expressed (Carlip, 1999b)

HIE] = /d Qe ¢ Blg). (2.5)

The Poisson bracket forms a standard “surface deformation algebra” (Brown and
Henneaux, 1986; Carlip, 1999b)

{H[&], H[&]} = H[{&1, &2}] + K[&1, &2], (2.6)

where the central terrK[£1, €] depends on the dynamical fields only through
their boundary values.

The low-energy Lagrangian obtained from heterotic string theory in four
dimensional spacetime is described by

Labcd = Eabcd[ R— 2(V¢)2 - e—2a¢ FZ]! (2-7)

whereeapncq is the volume elemend is the dilaton scalar fieldsay is the Maxwell

field associated with & (1) sub-group oEg x Egor Spin (32) Z,, and« is a free
parameter which governs the strength of the coupling of the dilaton to the Maxwell
field. From Lagrangian (2.7) we find that the equations of md&idor dynamical
fields A,, ¢, andg,, can be respectively expressed as

v, (e7*?Fm) =0, (2.8)

1
V29 + > e 2F, FY =0, (2.9)

1 — £
R,uv - Eg;wR = 2Vu¢vv¢ - g,uv(V(p)z + 2e 2 ¢Fﬂv Ff

1
= 5% € Py PP, (2.10)

We know from Eg. (2.2) that the symplectic potentiaH 1)-form is given by

1
Obedld, Leg] = deavcd { é(vev[efsa] + RBE®) — £°Vep V20

— e XA Fer£® + (EeAe);f]} : (2.11)
Egs. (2.2) and (2.11) show

1
Jbed = 2€abed {vev[esa] —2e 2R3N (g8 A).¢ + [R:;‘ — 50R—2Vep V9

1
+85(Ve)* — 26 2 F Fer + Sde e Fz} se}
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= 2€apcd VeVIEY — 26720 FAT(£°A,) ¢
= Zeabcd[VeV[eg""] + 4V (e‘z"‘"’V[f Aa] Ae.‘;:e)] (212)

We used the equations of motion (2.10) and (2.8) in above calculation. Using
Egs. (2.3) and (2.12) we obtain

Qcd = —€ancd VAE® 4 4672 ALECVAAR], (2.13)

For a static dilaton black hole, the dilation scalar field, the electromagnetic potential
A,, and the Killing vector can be respectively expressed as

¢ =), (2.14)
Aa = (Ao(r,0), 0, 0,Aq(r, 0)), (2.15)
xi =(1,0,0,0) (2.16)

Similar to Carlip’s definition (Carlip, 1999b), we define a “stretched horizon”
x2 = e,wherex? = ganx?xP°, x?isaKilling vector. The result of the computation
will be evaluated at the event horizon of the black hole by taking zero. Near
the stretched horizon, one can introduce a vector orthogonal to the oplitf
Vax? = —2«kps Wherex is the surface gravity. The vectp? satisfies conditions

1
x%pa = —=x%xVaxp =0, everywhere
K

p® — x?, atthe horizon. (2.17)
To preserve “asymptotic” structure at horizon, we impose Carlip’s boundary con-
ditions (Carlip, 1999b)
1
§x2=0, x?t°8Qap =0, 8pa= —Z—Va(SXZ) =0, at x>=0, (2.18)
K

wheret? is a any unit spacelike vector tangent to bounddviyof the spacetimi .
And the infinitesimal generator of a diffeomorphism is taken as
£3 = Rp® + Tx?, (2.19)

where functionsk and7 obey the relations (Carlip, 1999b)

1)(2 a
R = ;?X Va7, everywhere

02V,T =0, atthe horizon. (2.20)

For a one-parameter group of diffeomorphism suchfiat = 1,7, (D = x2d5),
one introduces an orthogonality relation (Carlip, 1999b)

| enT~ s, (2.21)
aC
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wheredC represents Killing horizon. The technical role of the condition (2.21) is
to guarantee the existence of generatﬂts]. By using the other future-directed

null normal vectoN? = k& — — %, with k* = — 5 (x* - 11 52) and a nor-
malizationN, x? = —1, the volume element can be expressed as
€aped = €cd(XaNo — xbNa) + - -, (2.22)

the omitted terms do not contribute to the integral.
We know that the first two terms in the right hand for the following equation

ol ot ety i
aC aC

- e R e+ (A 2.29
can be treated as Carlip did (Carlip, 1999b). At the horizon, using Egs. (2.14),
(2.15), (2.16), and (2.18)—(2.22) we can show

€abcdSE5 VPP Ve = 0, (2.24)
€abcd e72a¢Eanf [ Fefi:e + (SeAe);f]
= €abcd eiza¢§'anf5g A¢

= &cq €727 ['j;lT + (ﬁ +1- ,0) RXb} FPTs: A

—0. (2.25)

Thus, the last three terms in Eq. (2.23) give no contribution to the central term.
By the boundary conditions we can prove

€abcd € ¢ AckCVAAP - 0. (2.26)
Then, Eq. (2.13) becomes
Qcd = _Eabcdvaéb- (2-27)

For the Noether current we hasigJ[&1] = d[£&(O[¢, Le1¢] — &1 - L)]. whered;
denotes the variation corresponding to diffeomorphism generated®wybstitut-
ing itinto Eq. (2.4) and using Eq. (2.11) we obtain

S, H[&1] = /BC(§2@[¢, Le, @] — £1O[9, L, ] — &261L)

_ / caned E2Va(VOED — VPES) — E2V(VOED — VPES)]

aC

_4 / eavon (63F P[Furt + (A, ]
0
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— E0F "P[Fer&s + (E5A¢)., ]}
- /ﬁ _canea [4RE(6755 — £740) + £7¢0L]
—4 /d . Cabed (8587 — 5155 VPhVed. (2.28)
Using Egs. (2.14)—(2.16) and (2.18)—(2.22) we know
/3 eanca635 — 1¢5) V0 Vet

~ (1x*\[lxl p
=/ €cd <——2> [—pbpe— —+t-p) xox®
ac K p 1Y [xI

x (,DT; — T.DT;) VP9 Ve

—o0, (2.29)
agsb
/ cacdiSEPL
aC
[ - Ix! 14 b b
= [ édl | =—Tpp+|—+1t-p)Raxp|(Tix’ + Rup"°)
ac P [x|
_ f 2ol [m'szlpz + (i +t -p) Rzﬂxz}
aC P [xI
—0, (2.30)

and

/ capcaRE (£28 — £2£9)
aC

. 1 x2) |:|X| ( 14 ) ]
b e e
=] € == ) |—pop” == +t-p]xox
/ac CdRe(sz p P x| °
x (1,07, — T,DT;) = 0. (2.31)
Substituting Egs. (2.25), (2.29), (2.30), and (2.31) into Eq. (2.28) we get

8e,H[E1] = /a  Cabee [68Ve(VoED — VP&P) — £2Ve(VoE — VPe5)].  (2.32)

The left side of Eq. (2.28) can be interpreted as the variation of the boundary term
J since the “bulk” part of the generatét[£;] on the left side vanishes on shell.

On the other hand, the changeldf¢;] under a surface deformation generated by
J[&2] can be precisely described by Dirac brackéft:], j[£2]}* (Carlip, 1999b).
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Thus we arrive at

{35, J[&D)* = / _ Cabed [£3Ve(VoEp — VP&F) — E2Ve(VoE; — V&5)].
’ (2.33)
Substituting Egs. (2.19), (2.20), and (2.22) into (2.33) we have

1
(&, J[E)) = —/C écd [;(ﬂD% — T,D°T; — 2¢(TiDTy —TZDTl)] .
a
(2.34)

The Hamiltonian (2.5) consists of two terms, but Egs. (2.24) and (2.25) and
discussion about - ® (Carlip, 1999b) show that the second terms make no con-
tribution. Thus, we have

- 1
I &2} = / &cd [ZK(TlDTz ~T,DTy) — ~D(TiD*T; ~ 720271)] .
aC
(2.35)
On shell Eq. (2.6) can be expressed as

{I[&], &0} = J[Hé1, &23] + K&, &2]. (2.36)
We know that from Eqs. (2.34) and (2.35) the central term is given by

.1
Kléw & = [ & (DT:DT; - DT:D?T). 237)
aC

In next section, we will study statistical entropies of some static dilaton black holes
using the constraint algebra.

3. STATISTICAL ENTROPY OF STATIC DILATON BLACK HOLES
3.1. The Garfinkle—Horowitz—Strominger Dilatonic Black Hole

One of the solutions for Egs. (2.8), (2.9), and (2.10) is the Garfinkle—
Horowitz—Strominger (GHS) dilatonic black hole (Garfinkteal,, 1991), which
can be written as

2M dr? .
ds? = —(1 - T) dt*+ 5 +1( —)(d0* +siro de),  (3.1)
r

with

2
e 2 =g 3, (3.2)
Mr

F = Qsind do A dg, (3.3)
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herea = % e 2%, andQ is the magnetic charge. If we consider functions of

v with period T, a one-parameter group of diffeomorphism satisfying Equation
(2.21) can be taken as

T 2 ni
Thn= — . 34
1= oo 2| 34
Substituting Eq. (3.4) into central term (2.37), and using condition (2.21) we obtain
i Ay 21
K[Zm, Tn] = ——— = m38mn 0, (3.5)
8t kT

where Ay = [, écq = 4nr,(r; — a) is the area of the event horizon. Equation
(2.36) thus takes standard form of a Virasoro algebra

. c
iH{I[Tm], I[7n]} = (M —n)I[Tinin] + 1—2m38m+n,o, (3.6)
with central charge
Cc Ay 21
A Nl 7
12 8m «T 3.7)

The boundary ternd[7p] can easily be obtained by using Egs. (2.3), (2.13), and
(3.4), which is given by
AH kT
Tol=A=——. .
7] —— (38)

Thus, from standard Cardy’s formula (Carlip, 1999b)

p(A) ~ exp{Zn /g (a- 2—(’4)} , (3.9)

we know that the number of states with a given eigenvaluef J[7g] grows
asymptotically for largeA as

2
o(A) ~ exp[% 2— <KﬁT> } . (3.10)

If and only if we take the period@ as the periodicity of the Euclidean black hole,
ie.,
2
T=2 (3.11)

K
the statistical entropy of the black hole

S~ Inp(A) = % =nary(ry —a), (3.12)

coincides with the standard Bekenstein—Hawking entropy.
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Now let us consider the first-order quantum correction to the entropy. In order
to do that, we should use following Cardy formula (see appendix for detail)

1/4
N Ceff Ceit
Peq(A) ~ [m} EXP{Zﬂ 5 (A - Z)} p(Ao),  (3.13)

wherece = ¢ — 24A¢. Then, from Egs. (3.7), (3.8), and (3.11) we know that the
entropy is given by

Ay 3 Ay
s="2 _mnine const,
4 2 4 * +
A 1Ay
= — — - In — +const 3.14
4 2 4 + ( )

The first line has two logarithmic terms and agrees with Carlip’s results (1.2)
(Carlip, 2000). However, after we tale= 2 /«, the second line shows that the
factor of the logarithmic term becomes%, which is different from Kaul and
Majumdar’s result.

3.2. The Garfinkle-Maeda Dilaton Black Hole

The Garfinkle—Maeda (GM) dilaton black hole metric obtained from string
theory (2.7) can be expressed as (Garfieklal., 1991; Gibbons and Maeda, 1988)

o?2-1

o2 = ~(1- ) (1= ) v (10 (1= ) o

22
412 (1 _ rT‘) =7 (462 4 sir 6 dg?), (3.15)
with dilaton field
2a
20 _ _ r_ T+a2 _2¢0

e _(1 r) e 2%, (3.16)

and Maxwell field
Fe r92 dt A dr, (3.17)

wherer = r, is the location of the event horizon. For= 0,r = r_ is the location
of the inner Cauchy horizon; however, fer> 0 the surface = r_ is singular.
The masav and chargeQ of the black hole are related to parametersandr _
by 2M =r, + 1+az)r, andQ® = eza%

The black hole has a Killing vectoy? m = 0. Thus, we obtain a one-

parameter group of diffeomorphism

L=_e xp[znm } (3.18)
2T
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Using the standard Cardy formula, the analysis of the preceding subsection goes
through with virtually no changes, yields a statistical entropy

r 202 /(14a?)
2 -
S=—=nr (l — —)

ry

(3.19)

The result is equal to the Bekenstein—Hawking entropy.
However, if we consider first-order quantum correction to the entropy by the
new Cardy formula (3.13), we get

Ay 1, A4
S=— — - In— +const 3.20
4 2 4 + ( )

4. SUMMARY AND DISCUSSION

With Carlip’s boundary conditions, a standard Virasoro subalgebra with cor-
responding central charge for static dilaton black hole is constructed at a Killing
horizon. As examples, the Garfinkle—Horowitz—Strominger dilaton black hole
and the Gibbons—Maeda dilaton black hole are considered. Only if weTtake
as the periodicity of the Euclidean black holg,= 27 /k, the statistical en-
tropies of the black holes yielded by standard Cardy formula agree with their
Bekenstein—Hawking entropies. It is easy to show that the result can be used for
other static dilaton black holes. Therefore, Carlip’s conclusion—the asymptotic
behavior of the density of states may be determined by the algebra of diffeo-
morphism at horizon—is valid for static dilaton black holes obtained from the
low-energy effective field theory that in turn is obtained from heterotic string
theory.

If we consider first-order quantum correction the entropy contains extra loga-
rithmic terms which agree with Carlip’s results (Carlip, 2000). However, we know
that in order to get the Bekenstein—Hawking entropy we have toTake2r /«.

That is to say, we can not set central chazge be a universal constant, indepen-
dent of area of the event horizon, by adjusting periodi€itgs Carlip did (Carlip,
2000). Therefore, the factor of the logarithmic ternori; which is different from
Kaul and Majumdar’s factor oﬁg.

It is well-known that leading correction to the entropy of the black hole
is described by a logarithmic term (Carlip, 2000; Cognola, 1998; Frolov and
Fursaev, 1998; Fursaev and Solodukhin, 1996; Jing and Yan, 1999, 2000; Kaul
and Majumdar, 2000; Mann and Solodukhin, 1996). We do not think that a real
physical result is related to calculating approach. Therefore, the reason that dif-
ferent methods lead to different corrections to the Bekenstein—Hawking entropy
should be sought deeply.
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APPENDIX: LOGARITHMIC CORRECTIONS
TO THE CARDY FORMULA

Carlip (2000) has shown that the number of states is
2ric 1 ~

p(A) = / dr e 21AT g=2minet o557 o581 7(—1/7), (A1)

whereZ(—1/7) approaches to a constaptAo), for larger. So the integral (A1)
can be evaluated by steepest descent provided that the imaginary péstafge
at the saddle point. The integral takes the form

I[a, b] = /df g2riaT+ =R £ (7). (A2)

The argument of the exponent is extremat@t g and expanding aroung,
one has (Carlip, 2000)

i 2xib (o y2 4
\a, b] ~ / dr eV O)f(fo)=<—%> VI (A3)

Comparing Egs. (A1) with (A2) we know

c c
=— — A, b=— — Ao A4
24 24 °° (A4)
Therefore, if we letCe = ¢ — 24A¢, the Cardy formula including logarithmic

corrections can be expressed as

1/4
pcq(A)w[%] exp{zn %(A—i)}pmox (A5)

% (A-% 6 24

a

which is equal to Carlip’s result (C.3) in Appendix C (Carlip, 1999b), if we ignore
the lowest order correction.
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